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Abstract 

The supersatellite reflections in the feldspar mineral 
labradorite are related to the Boggild intergrowth, a 
lamellar structure with a periodicity of about 1500/~. 
With high-resolution X-ray diffraction using synchrotron 
radiation, supersatellites up to fourth order are observed. 
The system is an example for a natural superstruc- 
ture with high-order diffraction harmonics. The satellite 
intensities reflect a transverse displacement modula- 
tion with a large amplitude. The complete unit cell 
of labradorite is affected by the displacement. In this 
context, various possible displacement functions are 
discussed. A Fourier expansion of the displacement 
function that yields the best agreement between mea- 
surement and theory has nearly triangular shape. The line 
width of the satellites characterizes imperfections of the 
lamellar superstructure: It increases linearly with satel- 
lite order, which is ascribed to uncorrelated variations 
(FWHM = 480/~) of the lamellar thickness. 

1. Introduction 

Labradorite crystals often show a colourful iridescence 
arising from a lamellar structure, the BCggild intergrowth 
(BCggild, 1924), with periodicities of around 1500/~. 
The satellite reflections related to this superstructure 
are the subject of the present study. They were first 
observed by Jagodzinski & Korekawa (1965) and called 
s-satellites (supersatellites) by them. Burandt, Komorek, 
Press & Boysen (1992) gave a first quantitative analysis 
of the satellite intensities: They were analysed within a 
model of a harmonic transverse displacement modulation 
of the entire unit cell, accompanied by a harmonic 
density modulation. A displacement amplitude of 0.75/~ 
was obtained. Therefore, this modulation has been called 
a 'frozen-in' transverse acoustic (TA) phonon. The con- 
tribution of the density modulation to the intensities 
turned out to be less than 2% of the unmodulated 
structure factor and hence is insignificant. This inves- 
tigation was based on a relatively small data set of 25 
a-reflections (see below for definition) and their satellites 
collected at a laboratory X-ray diffract©meter and the 
data were restricted to only two different scattering 
planes. The limited amount of data was due to the 

fact that enhanced resolution is required to separate 
the supersatellites from the main peaks. In continuation 
of this study, a larger high-resolution data set was 
measured with synchrotron radiation at the four-circle 
diffract©meter at the HASYLAB beamline D3. With 
special care taken of the experimental parameters at 
the four-circle diffract©meter, satellites up to fourth 
order were observed. The data set includes reflections at 
rather high momentum transfers. It is well suited for an 
investigation of both the intensities and the line shapes of 
the supersatellite reflections. From the intensities of the 
higher-order supersatellite reflections, more information 
on the modulation can be expected: It may be possible 
to identify displacements of individual atoms, indicating 
other mode eigenvectors with the same symmetry as the 
frozen-in TA phonon. So far, the displacement function 
was assumed to be purely harmonic. The large ampli- 
tude of the displacement function suggests, however, 
that anharmonic terms may also be significant. It was 
one of the goals of the present investigation to learn 
about the importance of higher-order contributions to the 
displacement function. Additionally, the line shape of the 
supersatellite reflections contains information about the 
degree of perfection of the lamellar superstructure. 

Some introductory remarks concerning previous 
studies on the structure of labradorite appear necessary: 
In the intermediate plagioclases, only main reflections 
with indices h + k = 2n and l -- 2n, called a-reflections, 
occur. In labradorite, supersatellites accompany all 
a-reflections. So-called b-reflections (h + k = 2n + 
1 and l = 2n + 1) are absent, but symmetrical to 
their positions e-satellites are found, while second- 
order satellites (often called f-satellites) surround the 
a-reflections. This e-type modulation has been observed 
and discussed controversially in the literature for 
more than four decades. Its period is about 30-60 ]k 
and this superstructure is mainly connected with 
a tendency towards A1-Si order (Toman & Frueh, 
1976). Various models are based on antiphase domains 
(Horst, Tagai, Korekawa & Jagodzinski, 1981) or 
the formation of albite- and anorthite-rich regions 
(Yamamoto, Nakazawa, Kitamura & Morimoto, 1984). 
We have recently reinvestigated the e-type modulation 
using synchrotron data. This will be published in a 
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separate paper (Kek, Kalning, Press, Boysen & Frey, 
1997). 

As pointed out by Jagodzinski (1984), these results 
represent a coherent superposition of the structures of 
two types of BCggild lamellae, since they do not consider 
the s-satellites. Apart from the (only) X-ray observa- 
tion of the s-modulation of Jagodzinski & Korekawa 
(1965), there are various transmission electron micro- 
scope (TEM) investigations (e.g. Wenk & Nakajima, 
1988; Smith & Brown, 1980; Hoshi, Tagai & Suzuki, 
1996). They reveal a lamellar structure with varying 
thicknesses and rough interfaces. Ion-probe measure- 
ments (Mifira & Tomisaka, 1978), as well as the recent 
TEM study of Hoshi, Tagai & Suzuki (1996), show 
that the An content in the two lamellae differs by 
about 10%. It should be mentioned that labradorites 
exhibiting the schiller effect always contain about 2-4% 
of orthoclase, which also seems to differ slightly in 
the two lamellae. The motivation to perform a quan- 
titative X-ray analysis of the s-modulation is that finer 
structural details may be derived and thermodynamically 
more relevant averages are determined (instead of the 
more local information of the TEM investigations). 
A fully conclusive description of the superstructures 
in labradorite should include both modulation types 
simultaneously. Two different situations are conceivable: 
(i) The e-modulation is continuous over the whole crys- 
tal. In this case, supersatellites should accompany the 
e-reflections. (ii) The e-modulation is characteristic for 
each s-lamella. In this case, two (broadened) e-satellites 
with slightly different orientation and position should be 
observed. Two-dimensional Q scans over the e-satellites 
(Kek et al., 1995) clearly reveal that case (ii) ap- 
plies, in agreement with TEM. Collecting a complete 
data set of both types of satellite simultaneously would 
be an enormous task, even at a synchrotron, apart 
from the difficulty of separating the superimposed two 
e-reflections. Nevertheless, the basic principles of the 
superstructure may be determined by treating both types 
separately, if one keeps in mind that for the s-type this 
means an average over the e-modulation is taken (non- 
consideration of e-satellites), while for the e-type an 
ideal structure (as if no s-modulation exists: here inte- 
grated a-intensities, including the s-satellite intensities, 
are used) is considered. 

The present paper is organized as follows: §2 deals 
with the calculation of the intensity distribution of the 
satellites. We derive analytical solutions for rectangu- 
lar and triangular displacement functions and compare 
these with the result of a Fourier expansion of the 
displacement function. §3 describes experimental details 
and the quality of the measured data. A discussion of 
the ~/~ rotation, which plays a crucial role in obtaining 
well resolved data, is given in Appendix A. In §4, the 
measured intensities are analysed and, in §5, the results 
are discussed. In addition, we give an interpretation of 
the measured line width. 

2. Theory 

A modern description of modulated structures in higher- 
dimensional space has been introduced by de Wolff 
(1974, 1977), Janner & Janssen (1977) and de Wolff, 
Janssen & Janner (1981). Recently, considerable Work 
has been done in analysing incommensurately modulated 
structures within the superspace formalism (Yamamoto, 
1982a,b; Petff~ek et al., 1991; Lam, Beurskens & van 
Smaalen, 1994), the last including higher harmonics. 
The importance of higher harmonics in the analysis of 
modulated structures has been emphasized by Jagodzin- 
ski (1984), with special regard to the feldspar minerals. 
Various program packages are now available for the re- 
finement of modulated structures. Test refinements have 
been done using J_ANA94 (Peff'i~ek, 1994). The super- 
space group is p~l with non-standard centring vectors 
(½" ' (00½0) ,  to ~0), (~ ½00) and keep the common prac- 
tise of describing intermediate plagioclases within the 
anorthite cell (i.e. c ~_ laA).  Allowing for various 
degrees of freedom, individual modulation waves for 
different (groups of) atoms, sine and cosine terms, and 
occupational wave for Ca/Na, the refinements finally 
showed that a purely transverse displacive modulation of 
the entire unit cell (i.e. no individual phases) is sufficient 
to fit the observed intensities satisfactorily [thus justify- 
ing the assumptions of Burandt et al. (1992)]. Owing 
to the limited data set (see below), all other degrees of 
freedom were hardly significant. To reduce the number 
of free parameters, various restrictions can be imposed 
in JANA.  

The data set suitable for the J A N A  refinement was 
available after scaling with integrated a-reflection in- 
tensities, measured by Kek et al. (1997). Before this 
combined data set was available, a rather simple model 
was used, which can easily be described using and 
extending the 'classical' satellite theory of Korekawa 
(1967a,b), which is equivalent to the superspace formal- 
ism and is more directly applicable to discuss various 
shapes  and their influence on the intensities. Moreover, 
this approach yields quantitative results on the basis 
of relative intensities of satellites versus main reflec- 
tions. These relative intensities of the various satellite 
orders are available directly from the experiment (see 
below). 

Since the density modulation turned out to be of 
little significance (see above), we restrict ourselves to 
a description in terms of displacement modulations of a 
sinusoidal, a rectangular and a triangular displacement 
function. Finally, an extension is made to the more 
general case of a Fourier series for the displacement 
function. 

Intensity formulae for the three types of shape func- 
tion have been derived by B6hm (1976, 1977) and are 
briefly repeated here. In the following, Qmod denotes the 
satellite vector and B the displacement vector, which is 
perpendicular to Qmod in the case of a purely transverse 
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modulation. Q± denotes the component of a reciprocal- 
lattice vector in the direction of B. 

For the transverse harmonic displacement modula- 
tion, the intensities are proportional to squares of Bessel 
functions of order n, with n denoting the satellite order 
and n = 0 the main reflection: 

= IFolej2 (O. B ) -  IFol2J (Q±B). (1) 

F 0 = F0(Q) is the structure factor of the (unmodu- 
lated) unit cell. The vector description also holds for 
a longitudinal displacement or any other direction of B. 
The harmonic displacement modulation is always useful 
as a first approximation of an arbitrary displacement 
function, which appears smooth, for example due to the 
averaging over a larger sample area. 

A rectangular displacement modulation corresponds 
to crystalline domains, transversely shifted against each 
other by an amplitude B (see Fig. 1). The resulting 
scattering amplitude is 

ISMRI = IF01[1 + 4 ( D I / M ) ( D 1 / M -  1) sin2(Q_LB)] (2) 

for the main reflection and 

= IF01l 2 sin(Q±B) sin(TrnD2/M ) 

I M sin(Trn/M) 

for the satellites n = + 1, + 2 . . . . .  M = D1 + D 2 is the 
period of the modulation in direct space. D l and D 2 de- 
note the widths of adjacent lamellae. For a symmetrical 
modulation (D l /M = 0.5), the satellites of even order 
are absent. Generally, the first-order satellite is stronger 
than the higher-order satellites in the rectangular case. 

The triangular modulation is parametrized (asymmet- 
ric with two different slopes) as shown in Fig. 1: 

a l ( x -  1/2) 0 _< x <_ (D' 1 + 1)/2 
g(x) = az(M'/2 + 1/2 - x) 

(D' 1 + 1)/2 <_ x <_ M ' -  (D' 1 + 1 ) /2 .  
(3) 

! ! 
D l and D 2 denote the widths of the two adjacent 

D1 D2 DI' DE' 
I I I I I I 

B I l I l  ± 

I I I I 
M M' 

(a) (b) 

Fig. 1. Illustration of  the parameters describing (a) the rectangular 
displacement and (b) the triangular displacement. While the rec- 
tangular displacement describes transversely shifted domains, the 
triangular displacement can be due to twinning or a mismatch of 
lattice parameters. 

domains, a I and a 2 are the slopes of the displacement 
function. The following relations hold: a 1 = 2B/D'I; 

' ' = Mr. a 2 = 2B/D~; with D 1 + D 2 
The scattering amplitude then reads: 

Is~,,.I = Ieoll{sin[(al + a2)Q_L/2] 
× sinffrD'~n/M' + Q_LB)} 
x [M' sin(Trn/M' + Q±B/D'I) 

× sin(Trn/M' - Q±B/D'2)]-II, 
n = 0 ,  + 1 , - t - 2  . . . . .  (4) 

Note that a difference in the width of the neighbouring 
lamellae (D l # D 2) yields different intensities for 
pairs of satellites of order +n. Conversely, for identical 
widths, a symmetric intensity distribution is observed. 
A triangular modulation can be associated with twinned 
domains, for example. 

The intensities for main reflections and satelites up 
to fourth order, resulting from these three cases, as 
described by equations (1), (2) and (4), are compared 
in Fig. 2. For simplicity, a Q-independent s.tructure 
factor F 0 and the same widths for the adjacent lamel- 
lae (D  1 = D2,  Dtl = D~) have been assumed. Note 
that the intensities are plotted versus IQ. B I and not 
simply versus ]Q[. The rectangular displacement yields 
main reflections whose intensity is periodic in IQ. B[ 
with maximum intensity at IQ. B] = 27rl (l integer). 
In between these positions, satellites occur, with the 
first-order satellites dominating in the symmetric case. 
For the sinusoidal displacement, the intensity of the 
main reflection is proportional to J~ and hence damped 
compared with that of the unmodulated structure. For 
the triangular modulation, the main reflections are more 
strongly damped and the intensities of higher-order 
satellites increase with increasing IQ.  BI. Simulated 
curves for Q scans along the direction of modulation 
are given in the respective inserts in Fig. 2. They 
are calculated assuming a resolution-limited width for 
the main reflection and a constant broadening for the 
satellites. Note the close similarity between the harmonic 
and the triangular displacement. 

A more general approach, which includes the analyt- 
ical solutions given above as special cases, is obtained 
by use of a Fourier expansion of the shape function. 
This approach is useful, since the high-order Fourier 
components of the shape function are not accessible 
in the measurement. A similar access is used in some 
higher-dimensional approaches such as JANA (Peff'f~ek, 
1994). Within the kinematical description, the scattering 
amplitude S(Q) is given by 

S(Q) = F(Q) ~ exp(- iQrn) .  
n 

F(Q) denotes the structure factor of the undisplaced unit 
cell, ~--~,, is the summation over all unit cells of the 
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crystal and r n is the origin of the nth unit cell (as we 
restrict ourselves to a modulation of the entire unit cell). 

In the case of a one-dimensional modulation, the unit 
cells are displaced periodically as a function of Qmod 
relative to their average positions r ,  and the scattering 
amplitude of the modulated crystal is 

The function g(r,,) describes the displacement (shape 
function) and is represented by a Fourier expansion: 

J m a x  

g ( r )  = B 0 ~ Cj sin(jQmodrn) + dj cos(jQmoorn). 
j : l  

Sm,~(Q) = F(Q) ~ exp [ - iQr  n + iQg(r,,)]. (5) 
n 

1.0 

.•0.8 

.~ 0.B 

0 

N 0.4 

~ 0.~- 

0 . 0  i . ~ - - - - r - - i  i t i I . . . . . . . . . . . . . .  l i i 

o 1 2 3 4 5 6 

rectangular displacement 

IQ.BI 

s i n u s o i d a l  d i s p l a c e m e n t  

1 . 2  . . . .  I ' ! ! . ! .  I. '. ' ~_ ' 1 . ' . ! . !  ' I . ! . '  ' . '  I . . . .  

flii AII  II I ~ 0.8 .. 

"~ 0.6 

~'~ o.4 

~ 0.2 

0.0 
0 1 2 3 4 5 6 

IQ.BI 

B 0 denotes the unit vector in the direction of the 
displacement amplitude B, cj and dj are the respective 
Fourier coefficients. Jmax is the maximum order of 
Fourier coefficients to be considered in the summation. 
Insertion into equation (5) yields 

Smod ( Q )  

= F(Q) ~ exp - i Q  r - B o ~ cj sin(jQmodrn) 
j = l  

= F(Q) ~ exp(- iQr~)  

J m a x  

× 1-I exp[iQB0cj sin(jQmodr~)] 
j----I 

x exp[iQBod j cos(jQmodr~)]. 

(6) 

(7) 

Bessel functions of integer order can be introduced via 
(Abramowitz & Stegun, 1972) 

O~3 

exp[irsin(O)]---- E Jn(r)exp(inO) (8) 
F l Y - - ( X )  

O 0  

exp[ircos(O)] = E Jm(r)exp[im( 0 + 7r/2)] (9) 
m=--oo 

O G  

= ~ imJm(r) exp(imO) 
m = - - o < 3  

symmetrical triangular displacement 
1 . 0  ' ' ' i ' ' ! .  !. L . . ' .  ' ' ' . 1 . ! . ' . '  ' 1 . '  ' ' ' i . . . .  

.~ 0.8 

~ 0 . 0  - 

i 0.4 

~ 0.2 

0.0 
0 1 2 3 4 5 6 

Iq'BI 

Fig. 2. The intensities of supersatellites of order n and of the main 
reflection (n = 0) calculated for three types of transverse dis- 
placement modulation: (I) rectangular displacement (symmetric 
case); (ll) harmonic displacement; and (III) triangular displacement 
(symmetric case). The inserts give calculated Q scans for ]QB] = 
(a) 1.00, (b) 2.50 and (c) 4.00 (compare with Fig. 5). 

and we obtain 

Smod ( Q )  
o O  

= F(Q) E E 
r /  /11 = - - o o  I / 2 = - - O O  / / ' / ) m a x  = - - O O  

×Jm (d; BoQ) exp[(iTr/2)g~mj] 
/ m a x  J m a x  j= 1 

[ J .... ] 
x exp - i r , ,Q  + irnQmo d }-~(njj + mjj) . 

j----I 

o o  O o  

• .. ~ J~,(clBoQ) × . . .  

(10) 

The expression ~,,exp[i(Q+Qm~)-'~'~j~" ] ...)r,,] is a 
lattice function in three dimensions. It yields nonzero 
values Smod(Q) only for Q - - - G  + nQmod, where G = 
27r(ha*,kb*,lc*) (h, k, l integer values) is a lattice 
vector (in the present notation). Summation of all terms 
contributing to the same reflection finally leads to the 
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expression 

Smod, n(Q) = F(Q) ~] Jn,(clBoQ). .-  
I . . . . .  Jmax 

- Jmax 

× Jmjm,x(djmaxBoQ) exp[(iTr/2)j~=lmJ] 

( l l )  

with the restriction 

Jmax 

~,(nj + mj)j = n, nj, mj integers. 
j = l  

The harmonic displacement function obviously is 
included in this description: Only the leading term 
sin(Qmodrn) of the Fourier series is retained, and the 
restriction in equation (11) yields just one solution, 
namely nj -- n. Hence, the summation reduces to only 
one term and the same result as in equation (1) is 
obtained. In the general case, the restriction (11) in 
principle requires consideration of an infinite number 
of products of Bessel functions. Fortunately, most of 
them are negligibly small, since the Bessel functions 
of higher order have small values (ILl < <  1) in the 
relevant IQ " BI range. Note that the satellites of order 
+n are not necessarily of equal intensity. 

3. Experimental details 

Two samples were prepared from the same large crystal 
used by Burandt et al. (1992). From microprobe analysis, 
an average chemical composition of An54Or4Ab42 was 
derived. (An = anorthite, Or = orthoclase, Ab = albite.) 
However, the observed blue schiller effect indicates a 
lower An content of 50 mol%. We obtained the following 
lattice constants: a -- 8.185(3), b = 12.874(3), c -- 
14.232(4)]k, a = 93.52 (2), ~ = 116.23(2) and 3' = 
89.83 (2) °, refined from 28 centred reflections (A = 
0.56 A,). 

The modulation vector was determined as Qmod -- 
(-0.012,0.060,0.012) (average value), which corre- 
sponds to a period length of 1440 (70)A,. The scanning 
direction is that of the modulation vector, which has ap- 
proximate direction [151], in good agreement with the re- 
sult of Burandt et al. (1992) and also with the values ob- 
tained by BCggild's optical experiments (BCggild, 1924). 
The step width (Ah, Ak, Al) = (-0.001,0.005, 0.001) 
was chosen to be small enough to make the best use of 
the mechanical accuracy of the instrument at the given 
wavelength (0.56/~). This wavelength is large enough to 
resolve the intrinsic width of Bragg peaks and satellites 
and it also allows coverage of a large Q range. The 
satellite intensities for larger Q values are particularly 
important when investigating details of the modulation 
shape. 

The experiments were performed with synchrotron ra- 
diation, at HASYLAB, Hamburg, on beamline D3 (four- 
circle diffractometer). The beamline is equipped with 
an Si(111) double monochromator, an Eulerian cradle 
and the operation is controlled by highly developed 
crystallographic software (Eichhorn, 1991) running on 
a MicroVax workstation. Measurements were performed 
in the Q-scan mode, which means for each measured 
reflection a scan on a straight line in reciprocal space 
through the main reflection and its supersatellites is 
performed. This method provides all the information 
about the respective intensities in one scan. Much care 
was taken in the resolution and optimum values were 
obtained by a reduced detector opening. Another effort 
was to find the best scattering geometry, considering the 
sample orientation and the anisotropic divergence of the 
synchrotron radiation at HASYLAB. The procedure is 
described in Appendix A. 

First, Q scans were performed for all reflections 
within the range sin(69)/A < 0.46/~ -1 (on sample 
I). The data were collected without optimizing the 
resolution along the radial direction (detector opening 
4 × 4 mm and the usual data-collection conditions) in 
order to prevent alignment problems or errors in the 
orientation matrix. All reflections exhibited satellites 
and, generally, their intensity distribution was in 
good agreement with the earlier results of Burandt 
et al. (1992). The measurements were then extended 
to higher Q values. As shown in Appendix A, the 
parameter ~b was found to be of extreme importance 
for separating overlapping reflections. Since the mod- 
ulation direction is "~ [151] and the amplitude vector 
roughly has the direction [10, 3, 8] (reciprocal-space co- 
ordinates), the Q dependence of satellite intensity should 
be visible best in the plane hOl or h i l l .  For sample 
II, optimum ~b values are provided for these reflections. 
Thus, a small but well resolved data set of 140 reflections 
was collected for sample II. Here, the detector opening 
was reduced to 0.1 mm, enhancing resolution in the 
radial direction. About 800 reflections were measured. 
To demonstrate the data quality, three Q scans measured 
with optimum resolution (sample II) are shown in Fig. 
3. They were selected in close correspondence with the 
three different regions discussed in Fig. 2 to illustrate 
the characteristics of the present measurements. The 
index of the reflections as well as the argument IQBI, 
calculated for a sinusoidal displacement, is given in Fig. 
2. Accordingly, the reflection 114 corresponds to the 
insert denoted (a) in Fig. 2, 2,0,10 to (b) and 806 to (c). 
Comparing the data, a rectangular displacement can be 
clearly ruled out, while both sinusoidal and triangular 
modulation functions show reasonable agreement. 

4. Data analysis 

Extracting the correct intensities is the main difficulty 
since the satellites are not always fully separable (see 
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Fig. 3). With increasing momentum transfer, the data 
are more and more difficult to interpret as the intensities 
are generally decreasing and the peaks broaden, too. 
For these reasons, numerous reflections were rejected in 
the analysis in a first run. 198 well resolved reflections 
remained and were fitted to the following model: A Voigt 
profile was taken for the main reflection (thus represent- 
ing the experimental resolution) and a convolution of 
this Voigt profile with a Lorentzian for the satellites. 
The following restrictions were made in the fit: 

(i) The distance between satellites of different order 
was kept fixed within each Q scan. 

2 

-6 

-6 
I I I 

0 2 4 

i - 1 4  
IQ~=l.oo 

. . . . . . . . . .  ~ / ~  ~ . . . . . . . . . .  

' -'4 ' 22 'AQOQ.~'/ 2 ' 4 ' s 

2 0 10 

IQBt 

A 

I l l I 

- 4  - - 2  

1 order i oide ~ 

-4. - 2  0 2 4 6 

Fig. 3. The Q scans for the reflections 114, 2,0t10 and 806 and 
the respective fits. Direct comparison with Fig. 2 suggests either 
a harmonic displacement or a triangular displacement. Note the 
difficulty of obtaining a unique fit for the reflection 806, which 
is caused by decreasing resolution at larger momentum transfer. 
Also, note the asymmetries in intensities of satellites of order 4-n, 
the evidence of fourth-order satellites from the fitting curve for 
reflection 806 and the positions of the first-order satellites, marked 
with arrows. 

(ii) In a first step (sample I), the same intrinsic width 
was assumed for all satellites, since a fit of individual 
peak widths would increase the number of parameters. 
In the case of higher-order satellites (mainly sample II), 
a linearly increasing (Lorentzian) width was found to fit 
the measurements far better (see Fig. 3). This finding is 
discussed below. 

Examples of the fits are shown in Fig. 3 (indicated 
by lines). A notable feature is a slight asymmetry of 
satellite intensities of order +n. As already mentioned, 
the asymmetry could be related to different widths of 
the two adjacent lamellae. Consequently, satellites of 
order i n  were treated separately in the fits. No errors 
of the intensity values are considered in the following. 
Implicitly, the data are treated as if the error was the 
same for all intensities. Within the theory in use, only 
relative intensities are exploited, which have values in 
the range between zero and unity (normalization to 
integrated intensities). Thus, the assumption of equal 
errors will not affect the results. 

Since the rectangular wave clearly does not apply, 
the data were analysed within the scope of the Fourier 
expansion described in §2, equation (11), and within 
a triangular shape, equation (5). The ratio of satellite 
intensities and the main reflection i n t ens i t i e s  Isat, n/lMR 
has been used as a fundamental quantity by Burandt 
et al. (1992). In the case of main reflections of zero 
intensity, the normalization to/MR causes artificial poles 
[see Fig. 5 of Burandt et al. (1992)], creating some 
inconvenience. In the present paper, we therefore sug- 
gest a normalization to the integrated intensity I = 
~--~n°°---oc Isat, n (n = 0 denoting the main reflection). For 
a pure displacement modulation, this is a reasonable 
choice, since the completeness of the Fourier expansion 
yields I = IF012 for any Fourier series. In both nor- 
malizations, the knowledge of the exact (unmodulated) 
structure factor and its Q dependence is not required 
for the data analysis. Additionally, in both cases, no 
Lorentz/polarization corrections are necessary. 

Within the approach of equation (11), the transverse- 
ness of the modulation was assumed a priori. To reduce 
the number of parameters in the fit, only the modulus 
of amplitude B and its direction are adapted. The latter 
is given by the angle between B and c*. Successively, 
higher-order harmonics were included in the expansion 
for B. The results are given in Table 1. The most impor- 
tant reduction in X 2 [= ~--~(lob s -- Icalc) 2] occurred after 
introducing the third term of the Fourier expansion. The 
expansion coefficient c 3 - -0 .0605 has the same sign 
as the corresponding term of the Fourier series for the 
triangular modulation: g(x) = 1 sin(x) - 1/9sin(3x) + 
1/25 sin(5x) - 1/49 sin(7x) + . . . .  The observed coef- 
ficient c a introduces significant asymmetry, while the 
higher Fourier components do not affect the fit quality 
and thus are not significant. Cosine terms (d;) were 
checked also, but were found to be insignificant. The fit 
results are illustrated in Fig. 4. They are compared with 
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Table 1. Fourier coefficients of  fits to the intensity data, successively including higher-order Fourier components 
(up to seventh order) 

In Fig. 6, the normal ized intensit ies are indicated with crosses. The expansion contains  sine terms only. The modulat ion funct ion is given as 
g ( r )  = B o ~-~tct sin(lQmodr ) with c I = 1. As can be seen from the evolut ion of the value of :~2, the introduction of c 3 was most effective. 
The parameters obtained from a fit with the tr iangular  modula t ion  are also listed. 

Fourier  expansion 

Coefficient B (A) c 2 c 3 c 4 c 5 c 6 c 7 X 2 

I 0.46 . . . . . .  3.437 
2 0.46 - 0 . 0 1 1  . . . . .  3.405 
3 0.48 - 0 . 0 1 1  - 0 . 0 6 1  . . . .  2.497 

3a 0.48 - - 0 . 0 5 8  . . . .  2.527 
4 0.48 - - 0 . 0 6 1  0.016 - - - 2.483 

4a 0.48 - 0 . 0 0 6 7  - 0 . 0 6 0  0.0128 - - - 2.475 
5 0.48 - - 0 . 0 6 1  0.017 - 0 . 0 0 4  - - 2.476 

5a 0.48 - 0 . 0 0 6 5  - 0 . 0 6 0  0.0126 - 0 . 0 0 7  - - 2.468 

7 0.48 - - 0 . 0 6 0  0.0165 - - 0.0064 2.483 

Tr iangular  model 

B (,~) D I / M  \2 

0.60 0.49 2.970 

the measured data for intensities of the main reflections 
as well as first-, second- and third-order satellites. The 
fit for the harmonic displacements is indicated by lines, 
while the result including higher harmonics up to fifth 
order is indicated by full circles. Additionally, the result 
for a purely triangular displacement is given (dashed 
lines). Following the fit results in Table 1, the latter 
curves were calculated for a small asymmetry (D l /M = 
0.49). In the regime of small arguments IQB01, the 
harmonic approach is sufficient. For larger arguments, 
both the Fourier expansion and the triangular model give 
somewhat better agreement. The actual displacement 
functions are hardly distinguishable, though. In Fig. 5, 
they are illustrated with the same symbols and lines as 
in Fig. 4. The displacement amplitude is 0.60 A, based 
on the triangular displacement modulation or 0.48 A, 
utilizing the Fourier expansion with direction ~ [10, 3, 8] 
(reciprocal-space coordinates, smallest integer values). 
The result is identical to B - 0.063a + 0.001b + 0.017c. 
The amplitude is smaller than the value of Burandt et 
al. (1992) but still quite large. Its direction, which is 
determined more accurately here, deviates 16 ° from the 
value given by Burandt et al. (1992). 

The results obtained with the JANA94 program for 
a similar simple model (only first- and third-order 
harmonics for the complete unit contents, no cosine 
terms) are in good agreement: The amplitude vector 
ended up with amplitude values x s i n l  - 0.0639 (3), 
ysin 1 -- 0.0012(6), zsin 1 -- 0.0261 (3) and xs in3  - 
-0.0038 (4), y sin 3 = 0.0003 (8), z sin 3 = -0.0011 (4). 

A list of observed and calculated parameters has 
been deposited.* An overall R value of roughly 17% 

* Lists of raw data, observed and calculated intensities,  refined param- 
eters and fit restrictions have been deposited with the IUCr (Reference: 

JS0050). Copies may be obtained through The Managing  Editor, 
International Union of Crystal lography,  5 Abbey Square, Chester CH 1 
2HU, England.  

was obtained, which can be reduced further (down 
to 13%) by allowing further degrees of freedom. The 
corresponding results were, however, not fully reliable 
but allow some hints to further discussion (see below). 

5. Discussion 

The relatively good fit, as shown in Table 1 and Fig. 
4, confirms that our simple model of a purely trans- 
verse displacive modulation of the entire unit cell does 
indeed reflect the main characteristics of the s-type 
superstructure. A new and essential result concerns de- 
tails of the displacement function. Agreement with a 
purely sinusoidal displacement modulation is quite good, 
while a rectangular shape can definitely be ruled out. 
Introduction of higher-order Fourier components shows 
that the displacement is anharmonic with the third- 
order coefficient relatively large and similar to that of 
a triangular modulation. 

Although the test refinements with JANA did not 
provide any really significant results concerning indi- 
vidual modulations of the atoms, some of them showed 
a 'general tendency', which may at least serve as a basis 
for further discussion. As expected and in agreement 
with TEM (Hoshi, Tagai & Suzuki, 1996) and ion-probe 
measurements (Mitira & Tomisaka, 1978), there is a 
modulation of the occupancy of the Na/Ca sites. These 
M sites are usually found to be split roughly along [053] 
in the average structure of intermediate plagioclases 
(Fitzgerald, Parise & Mackinson, 1986). As mentioned, 
this averaging relates to the e-modulation, but not to the 
s-modulation, for which an ideal unmodulated structure 
is refined. Our test refinements showed a tendency 
towards an antiphase occupational modulation of the two 
sites. In addition, allowing individual displacements for 
the two M sites showed that the x and z components are 
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roughly equal to those of the (rigid) Si/AI-O framework, 
while the y component (which is negligibly small for the 
framework) is large and again in antiphase between the 
two sites. So, an alternating occupancy of the two sites 
in the two s-lamellae might provide an explanation for 
the well known finding of split M sites in plagioclases. 

The observed nearly triangular shape function for the 
s-modulation can be explained as follows (see Fig. lb): 
The different An content in the two lamellae leads to 
slightly different lattice constants. In order to reduce the 
strains at the interfaces, the lamellae are slightly tilted 
relative to each other. This idea has already been put 
forward by Olsen (1977, 1979) who derived different 
lattice parameters for the two Boggild lamellae from 
TEM measurements, and with the TEM image in Wenk 
& Nakajiama (1988; see also Smith & Brown, 1980). 
Olsen (1977) reports a difference in the lattice angle 3' 
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Fig. 4. Relative intensities of the measured satellites (+  + +) ,  lsat, n/l 

with I = X~n~__ _~/sa t ,  n, denoting the integrated intensities, fitted 
by the triangular model (-  - -), the harmonic model ( ) and 
the Fourier expansion ( . . . . .  ). The main reflections, first-, second- 
and third-order satellites are displayed separately (B 0 = B/IBI). 

of LIT = 0.17 °. This value leads to a displacement am- 
1 plitude of 1500 ~ x~ sin 0.17 ° -- 1. l l/~,, a value larger 

than ours but of the same order of magnitude. Some 
of the departure from a triangular displacement func- 
tion can be attributed to the method: X-ray scattering 
averages over a large area in real space and samples 
a limited number of Fourier components. Contributions 
of lamellae with varying width smooth the resulting 
displacement function. 

Finally, the line width of the satellite reflections 
is discussed. It is considerably larger than the width 
of the main peaks. The latter has been used as the 
experimental resolution. Here, effects like the mosaicity 
of the sample are already included. The additional width 
of the satellites is obtained by a deconvolution and 
results from the limited range and imperfections of the 
superstructure. For the best resolved scans of sample II, 
the intrinsic satellite widths were extracted. As already 
evident from Fig. 3, the satellite width increases linearly 
with the satellite order n. The average experimental 
values are presented in Fig. 6: It yields a straight line 
with a slope of 1.3 (2) × 10 -3 ~ - ] .  With the inverse 
width taken as the range of the correlation, a value of 
about 5000/~ is obtained from the first-order satellites. 
This value is small compared with the period of the 
lamellar superstructure. 

A linear increase is characteristic of strains. There is 
no size effect, which should yield an additional constant 
contribution, and no short-range or paracrystalline be- 
haviour, which should lead to a quadratic increase. The 
corresponding strain 

A l  s AQmod 1.3 X 10 - 3  

I, Qmod 4.35 x 10 -3 
= 0.30 

is very large (I s = thickness of lamellae) and appears 
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Fig. 5. The displacement functions describing the modulation. They 
correspond to the fits in Fig. 4 for the analytical triangular displace- 
ment (-  - -), the harmonic displacement ( . . . . . .  ) and the Fourier 
expansion ( . . . . .  ). The parameters are given in Table 1. 
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implausible as a homogeneous strain field of very long 
range. 

We therefore developed a model for the profiles taking 
into account varying lamellar thicknesses with small 
finite sizes. Within such a model, an average roughness 
of 480/~ is derived, which is a realistic average value 
when integrating over the whole sample. Assuming 
perfect ordered packages, this large average roughness 
invalidates the approximation of the profiles by simple 
Lorentzians. In fact, the superposition of individual Laue 
functions gives much better fits. A more detailed profile 
analysis of the data within this model is in progress. 

APPENDIX A 
Optimizing resolution in the Q-scan mode 

The Q-scan mode allows scans along linear rods in 
reciprocal space. Owing to the anisotropic resolution 
at HASYLAB beamline D3, a Q scan with arbitrary 
sample orientation does not always provide the best 
resolution. This is shown in Fig. 7(a) for the Q scan 
on reflection 606. The ~, rotation offers a strategy for 
optimizing the resolution in Q scans, as illustrated below. 
For the possibility of an arbitrary sample rotation using 
the Eulerian cradle, there is in principle an infinite 
number of settings for the diffractometer angles X, 
and co, which satisfy the scattering condition. For a given 
reflection hkl, this is illustrated by use of the parameter 
~, denoting a rotation about the scattering vector. By 
default, the Q scan is normally done at ~, = 0 °, which 
represents the bisecting mode (co = 20/2). The choice 
of ~ is a crucial point concerning the measurements, 
its influence on the experimental results is illustrated 
in Fig. 7 using the example of 606 reflection. In the 
genuine Q scan of the reflection 606 with ~, = 0, the 
supersatellites are not well resolved (Fig. 7a). A series 

0 . 0 0 5  . . . .  j . . . .  i . . . .  i . . . .  

0 . 0 0 4  I 
o< t i 

0.0.03 

0 . 0 0 2  

-6 
"Z2 

0 .001  

0 . 0 0 0  . . . .  i . . . .  I . . . .  t . . . .  
0 1 2 3 4 

o r d e r  
Fig. 6. The intrinsic width of the satellites of order n obtained after 

deconvolution. The data suggest a linear broadening with increasing 
satellite order. A slope of 1.3 (2) A -  1 is found. 

of co scans with different ~b values is shown in Fig. 7(b). 
For ~b =- 230 °, the satellites are clearly separate but, for 
~b - 160 °, the satellites remain completely unresolved. 
Instead, an increased intensity is obtained, originating 
from the integration over the main reflection and the 
supersatellites. The anisotropic resolution window in 
the '[Q[ = constant' plane and the meaning of ~b are 
illustrated in Fig. 7(c). From this sketch, the importance 
of an optimum ~b value becomes obvious, both for a Q 
scan along the satellite vector and for the co scan. An 
optimum choice for ~/~ definitely improves the quality of 
the data. 

{It would have been better to perform Q scans with 
different ~, values in Fig. 7(b) but this option was not 
available at the time of this measurement. From the 
anisotropic resolution function at the instrument, the co 
scan in the present case contains the same information 
as the Q scan, as the satellite vector (direction [i51]) is 
almost perpendicular to 606.} 

The best ~, value can be derived using the basic 
diffractometer equation as given e.g. in Eichhorn (1991) 
or in Busing & Levy (1967): 

Vdiff-- ~(¢)Ro(hkl)UB(hkl ). (12) 

Vdi ff is the diffraction vector, ~0 is the *~,-rotation matrix, 
R o is the instrumental angle matrix (bisecting case) 
and UB the sample orientation matrix. The equation is 

1 6 0 6  genuine Q-scan (~I~-O) (~ ~ :  
+ . . . . . . . . . . . . . . . . . . . . . . . . . .  . ,  . 

-4  -3  -2  -1 0 1 2 3 ...... 

q/cl~od + ~ 

(c)[ ,I,=O + opU~ed ..., 
(a rb .  cho i ce )  (50 0 /2300)  .~ 

., 
esolutio -o la-~o.z-0. t  o.o 0.I o.2 o.a 

[ L_._T window - [__=J 
co/° 

Fig. 7. (a) Genuine Q scan for rcflcction 6J06, rccorded in the bisecting 
mode (t' = 0, as cxplained in the tcxt). (b) ~' scans for different 
values of ~': fbr thc same reflection. The satcllites are bcst resolvcd 
in the ~, scan with t" -- 230 °. (c) Illustration of the scattering 
geometry for diffcrcnt t!' valucs. The sketch shows the Q-space 
plane perpendicular to thc scattering vector of thc main rcflcction. 
The box illustrates the anisotropy of the resolution window and the 
large circle inside the resolution window denotes the main reflection, 
which is symmetrically surrounded by two satellite reflections. 
When ~' -- 0, the orientation of the scanning direction is arbitrary 
with respect to the resolution window, while, for an optimum ~, 
value, the satellites can be separated more easily, both in the ~' 
scan and in the Q scan. 
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normally used to calculate the settings of the instrumen- 
tal angles for the reflection hkl. Somehow, calculating 
Vdiff for the scanning direction qmod -- [AhAkAI] 
contains information about the scanning geometry. With 
the optimum choice for ~/;, the third component of the 
diffraction vector Vdiff(3 ) is zero in the equation 

V d i f f  = k~(¢)Ro(hkl)UB[AhAkAl ]. ( 1 3 )  

This means that the sample is rotated around the scat- 
tering vector hkl until the vector ( A h A k A l )  -- Qmod 
reaches the basal plane of the Eulerian cradle. With 
proper account for the anisotropic divergence of the 
synchrotron-radiation beam at HASYLAB, optimum res- 
olution is obtained in the basal plane. The effect of an 
optimum choice for ¢ in the Q-scan mode is demon- 
strated in Fig. 8. Q scans (~b = 0) of reflection 600 for 
two samples with different orientation are shown. The 
optimum f value was calculated as 133 ° for sample I, 
while it is 8 ° for sample II. As expected, for sample 
II and the Q scan with ¢ = 0 °, the satellites are far 
better resolved than for sample 1. The Q scan can 
be performed with a selected ~/; value too but, owing 
to the large shading regions of the Eulerian cradle, 
the optimum scan is not always possible without an 
appropriate preorientation of the sample. 

We are indebted to Dr K.-F. Hesse (Institut for 
Kristallographie, Universitiit Kiel), for help in prepa- 
ration of sample I, to Dr G. Adiwidjaja (Institut fOr 
Mineralogie, Universitiit Hamburg) for the preparation 

(6 o o) 
' ' ' I ' ' ' I ' ' ' 1 ' ' 

1- 0 sample I 

) 

4. 

I "~ '  , , ~ 1 , , , I , , 

- 4  - 2  0 2 

A Q / / Q m o d  

Fig. 8. The Q scan on the reflection 600, recorded for two different 
samples. The quality of the Q scan is far better for sample 1I, since 
the preorientation of the sample leads to an optimum t5 value of 8 °, 
while for the 600 reflection of sample I the optimum choice would 
have been 133 °. Since the Q scan was recorded in the bisecting 
mode, a value close to 0 or 180 ° provides optimum resolution for 
this scan. 

of sample II and to A. Richter (Universitiit Kiel) for 
providing the mother crystal. Many thanks are owed 
to Dr P. M. Sachs (GEOMAR, Kiel) for the micro- 
probe analysis and Sebastian K6rber, Herwig Requardt 
and Wolfgang A. Caliebe for assistance during the mea- 
surements. Dr K. Eichhorn and Dr H. G. Krane pro- 
vided a perfectly running X-ray diffraction machine at 
HASYLAB D3. The data analysis was performed with 
the program packages LSFIT (N61deke, Seeck, Grieger 
& Nitz, 1995) and JANA (Peff'i~ek, 1994). It is a pleasure 
to thank Oliver H. Seeck (Institut ftir Experimental- 
physik, Universiffit Kiel) and Dr Vaclav Peff-i~ek for 
their kind support. The Deutsche Forschungsgemein- 
schaft is acknowledged for financial support within the 
Schwerpunktprogramm 'Pseudosymmetrie' .  
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